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Abstract-The work-hardening behavior of piezoelectric composites is investigated by utilizing the
variational principle and the equivalent inclusion method. When the matrix of a piezoelectric
composite subjected to a uniaxial tension is perfectly plastic and the piezoelectric inhomogeneities
are elastic, the linear work-hardening rate is predicted. In particular, when both the matrix and the
inhomogeneities of the piezoelectric material are transversely isotropic with different electroelastic
moduli, and shapes of the inhomogeneities are elliptical, ribbon-like, rod-shaped and penny-shaped,
the yielding stress and the work-hardening rate are obtained in closed forms. The results show that
the work-hardening rate is proportional to the volume fraction of the inhomogeneities. Moreover,
it is found that the work-hardening rate and the yielding stress are dependent on the shape and the
volume fraction of the inhomogeneities but are independent on the size of the inhomogeneities.

1. INTRODUCTION

For years piezoelectric materials have served as the heart of many transducers and sensors
with the responsibility of electromechanical energy conversion. They are typically utilized
for generating an acoustic pulse from an input external loading (or electric signal) and
detecting an acoustic pulse and then converting it into an electric signal (Dunn and Taya,
1993). These kinds of materials are referred to as smart or active materials which can
feedback the internal states of a material or structure. This may explain why piezoelectric
materials constitute an important branch of the recently emerging technologies of modern
engineering materials.

Historically, improvement in piezoelectric materials and other applications centered
on the development of improved single phase materials. Recently considerable research has
been directed toward the development of piezoelectric composite materials which use the
advantageous properties of two or more materials in combination. Furthermore, it is
reported experimentally that piezoelectric composite materials work-harden much faster
than do those consisting of a single phase. This is because piezoelectric composite materials
do not deform equally. If piezoelectric inclusions (such as fiber, precipitate, dispersed
particle, etc.) have larger elastic limits than that of the matrix, plastic deformations are
restricted in the matrix, and the plastic flow in the matrix is constrained by the inclusions.
Therefore, the deformation gradient is increased. The plastic deformation of piezoelectric
composites with high strength inclusions becomes a very important problem in materials
engineering and stimulates researchers to establish a theoretical framework for such a
problem.

To the author's knowledge, no such framework exists at this time. The purpose of this
work is to develop such a theory to explain the work-hardening behavior of piezoelectric
composites subjected to a uniaxial tension. The approach of Mura (1987) for isotropic
materials is generalized to the inherently anisotropic coupled behavior of piezoelectric
heterogeneous media. By means of the variational principle (Huang and Mura, 1994) and
the equivalent inclusion method (Eshelby, 1957), the coupling work-hardening behavior of
piezoelectric composite materials between the mechanical and electric field is investigated.
Special attention is focused on when both of the piezoelectric materials of matrix and
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inhomogeneities are transversely isotropic with different electroelastic constants, and shapes
of the inhomogeneities are elliptical, ribbon-like, rod-shaped, and penny-shaped.

2. VARIATIONAL METHOD

Before proceeding, a few notations used in the subsequent sections are introduced.
The usual summation convention applies to repeated Latin subscripts throughout this
paper. Lowercase Latin subscripts range from I to 3, while uppercase subscripts range from
I to 4. For example, TJVJ = Tp,+ T4 V 4 , where j = 1-3. Denote the elastic, piezoelectric
and dielectric moduli of a piezoelectric material as (Barnett and Lothe, 1975)

J,K = 1,2,3

J = 1,2, 3 ; K = 4

J = 4; K = 1,2,3 '

J,K=4

(1)

where Cijkl are elastic moduli measured at a constant electric field, e;kl is the piezoelectric
coefficient measured at a constant strain or electric field, and Kif is the dielectric constant
measured at a constant strain. In such shorthand notation, the elastic displacement--electric
potential, VI> the elastic strain--electric potential gradient, ZJi, and the stress--electric dis
placement, LjJ, can be combined to get the following forms:

{

U
j
. J = I, 2, 3

VJ = ,J,.
'P J=4

{

Cii J = 1,2,3
ZJ; =

-E; = ¢J J = 4

raij J = 1,2,3
L = \

iJ lD
i

J = 4 .

(2a)

(2b)

(2c)

Here uj , Cji> (Jij, Ei> ¢, and D; represent the elastic displacement, strain, stress, electric field,
electric potential, and electric displacement, respectively.

Next, consider a piezoelectric medium D which consists of matrix Do with the elastic,
piezoelectric and dielectric moduli CUM" and inhomogeneities D1 with the elastic, piezo
electric and dielectric moduli C'!JMn' The domain D1 denotes the total volume occupied
by many ellipsoidal inhomogeneities. The possible mechanical state is determined by the
Hamilton's principle which holds for irreversible processes under some assumptions necess
ary for an individual problem. The principle states that a variation of the Lagrangian bL is
equal to the dissipation bQ, i.e.

bL = bQ. (3)

Suppose a surface traction and a normal electric displacement, tl> are prescribed on
the boundary S ofD. In the absence of body forces and free electric charges in a piezoelectric
solid, the variation of the Lagrangian bL for a static case is expressed as

(4)

where V~ is caused by the uniform applied load (J?, and the prescribed electric displacement
D? when the material has no inhomogeneity and no plastic strain (Zj; = 0), while VI and
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L U refer to the quantities induced by the presence of the inhomogeneity and plastic strain
Z5;. When the equations of equilibrium and boundary conditions

L~-i = 0, LU-i = 0 in D,

are satisfied, eqn (4), after integration by parts, becomes

(5a)

(5b)

(6)

In the present study, the matrix of the piezoelectric composite material is assumed to be
perfectly plastic with yielding stress ay and the piezoelectric inhomogeneities are plastically
nondeforming. The piezoelectric composite is subjected to a uniaxial tension a~3 = aO in
the X3 direction (other components a~ = 0 and the electric displacement D? = 0), and the
piezoelectric composite material behaves like a work-hardening material. Since the matrix
is a perfectly plastic material, the plastic strain 8 in the tensile direction and -8/2 in the
perpendicular direction are occurring in tensile test. The yielding stress is ay and the
dissipation c5Q can be written as

c5Q = f a,c58d V.
Do

Substituting eqns (6) and (7) into eqn (3) leads to

Doa°c58+ r aij(58),dV= Doayc58,
JDo

since only plastic strain 8~ exists. Rewrite the integral term in the last equation as

In derivation of the equation above, the following identity has been employed:

(7)

(8)

(9)

where the last two integrals in the preceding equation vanish due to aljnj = 0 on Sand
alj,1 = 0 in D. Equation (9) reveals that a uniform plastic strain 8~ defined in the matrix
D-D j is equivalent to a uniform plastic strain -8Y; defined in the domain D j •

If the distance between inhomogeneities is far enough to neglect the interaction,
the elastic stress and the electric displacement, L u, in D j becomes constant when the
inhomogeneities are ellipsoidal (Huang and Yu, 1994). Therefore, eqn (9) can be evaluated
as

-f aljc5BY;dV = -D j (a33c58-ajjc58/2-a22c58/2).
D,

Finally, eqn (8) becomes

(11 )
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(12)

where f = DdDo ~ DdD is the volume fraction of inhomogeneities. The uniform internal
stress (Jij can be determined by applying the equivalent inclusion method (Eshelby, 1957)
as shown in the following section.

3. EQUIVALENT INCLUSION METHOD

Let the inhomogeneity be an ellipsoid defined by

(13)

where aI, a2 and Q3 are the lengths of the semiaxis of the ellipsoid. The plastic strain
- Z~;'/ inside the domain nwill induce elastic displacement and electric potential, UK, elastic
strain and electric field, ZKI, and elastic stress and electric displacement, LiJ. The induced
stress and electric displacement can be calculated by applying the equivalent inclusion
method which states that the presence ofan inhomogeneity can be simulated by an inclusion
in the homogeneous material with plastic strain - Z~l plus the equivalent eigenstrain Z ~l'

i.e.

LZ,+LiJ = C~KI(Z~I+ZKI+Zka

= CiJKI(Z~I+ZKI+Z~I-Z~I) in D I • (14)

It is seen that LiJ is equivalent to the elastic stress and electric displacement caused by
Z~l-Zkl uniformly distributed inside the domain D j assuming that the whole domain D
is homogeneous with the same electroelastic constants CiJKI as those of the matrix. The
induced strain and electric field, ZKI' can simply be obtained for an ellipsoidal inclusion as

(15)

where SKIAb is referred to as Eshe1by's tensor for anisotropic material of piezoelectricity and
has the properties below

K,A = 1,2,3

K = 1, 2, 3 ; A = 4

K = 4; A = 1,2, 3

K,A =4

(16)

On substituting eqn (15) into eqn (14), it follows that

where

and

(17)

(18a)

(18b)

(19a)

(19b)
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-1 (bambbn +bbmban)/2
I AbMn - bbn

o

A,M~ 3

A =M=4

otherwise.

(19c)

Equations (18) and (19) are determined when the electroelastic constants and the shape of
the inclusion are specified.

Since the piezoelectric composite is subject to a uniaxial tension in the X 3 direction,
L~ = 0 except L~ 3 = aD, and CAb~ML~M = CAb'33 aD. In addition, to represent hiJMn and H IJ

in a 9 x 9 matrix and 9 x I column vectors, respectively, the following mapping of adjacent
indices is utilized (Dunn and Taya, 1993) :

ll-d, 22---+2, 33---+3, 23---+4, 13---+5,

12---+6, 14---+7, 24---+8, 34---+9. (20)

This mappings are simply those of the known Voight two-index notation. Using this
mapping, eqn (17) is written out in detail:

h'IZf+h12Z!+h13Z!+hI9Zt = HI,

h21Zf+hnZ!+h23Z!+h29Zt = H2,

h3IZf+h32Z!+h33Z!+h39Zt = H3 ,

h9,Zf+h92Z!+h93Z!+h99Zt = H9 • (21)

After some straightforward but tedious algebraic manipulations, the simultaneous equa
tions above for the eigenstrain Zf,n can be solved to yield

Zr = R,c+QjaO,

Z! = R2c+Q2ao,

Z! = R3c+ Q3ao,

(22)

where Qi and R j (i = 1, 2, 3, 9) are rather lengthy and not listed here, but are tabulated in
Appendix A.

4. EXAMPLES

In this section, we will examine the work-hardening behavior of a piezoelectric com
posite material. When shapes of inhomogeneity are elliptical, ribbon-like, rod-shaped, and
penny-shaped and the material is considered to be transversely isotropic, the analytical
results are presented. Let the crystalline directions of the piezoelectric material coincide
with the principal axes of the inhomogeneity, and both of the piezoelectric materials of
matrix and inhomogeneity be transversely isotropic with X 3 as a symmetry axis. Then, the
elastic, piezoelectric and dielectric constants CiJMn are expressed in a 9 x 9 matrix form as
follows:
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C l1 C I2 C I3 0 0 0 0 0 e31

C II C I3 0 0 0 0 0 e31

CB 0 0 0 0 0 eB

C44 0 0 0 el5 0

[C UMn ] = C44 0 e15 0 0 (23)

Sym. C66 0 0 0

~Kll 0 0

-Kll 0

-KB

where C66 =(CII -Cd/2.
Let the crystalline axes of the matrix and those of the inhomogeneities coincide, the

electroelastic Eshelby's tensors for the transversely isotropic material are given below for
the limiting case of an ellipsoid (Huang and Yu, 1994).

Elliptical inclusion (ada2 = a, a3 ~ 00)

_ a {2Cl1 +C12 a+2}SI111 - +-- ,
2(a+ 1)2 C II a

a {(2+a)C I2 }SII22 = -1,
2(a+ 1)2 aC 11

ell

S1143 = (a+i)C II '

S2211 = __a_ {(l +2a)C I2 -I}, 5 2222 = __ f.}._, {2a+ 3CI~+CI2 },
2(a+ 1)2 C l1 2(a+ 1)- 11

aC I3
S2233 = (a+l)C1, '

ae31

5 2243 = (a+ I)C11 '

I
S1313 = SIBI = 5 3131 = 5 3113 = 2(a+ 1)'

a
5 2323 = 5'311 = 5 32 '2 = 5 3))3 = --'," .• ., -- 2(a+ I)

1 a
5 4141 = a+l' S4242 = a+l'

5 1111 = 1-[a(CII-C12)/(2CII)]'

5 1122 = (CdC]I) - [a(C II +3Cd/(2C I1 )],

S1I33 = (l-a)(C13 /C1d, 5 1143 =(l-a)(e31/Cll)'

S1212 = S1221 = S2II2 = S2121 = 1/2-[a(CII +Cd/(2C11 )],

5 1313 = 5 1331 = 5 3113 = 5 3131 =(1 ~a)/2,

(24)
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S2323 = S2332 = S3223 = S3232 = a/2,

S4141 = I-a, S4242 = a.

SIIII = S2222 = (SCI I+ C12)/(8CII ), SII22 = S2211 = (3C12 - C Id/(8C, d,

SI133 = S2233 = C 13 /(2CI1 ), SI143 = S2243 = e31!(2C Id,

S1212 = S1221 = S2112 = S2121 = (3C11 - C12)/(8CII ),

SI313 = SI331 = S3131 = S3113 = S2323 = S2332 = S3232 = S3223 = 1/4,

S4141 = S4242 = 1/2.

1445

(25)

(26)

SI313 = SI331 = S3113 = S3131 = S2323 = S2332 = S3223 = S3232 = 1/2,

SI341 = S3141 = S2342 = S3242 = e ls !(2C44 ),

S33I1 = S3322 = (C13 K33 + e31 e33)!(C33 K33 +e~3)'

S3333 = S4343 = 1, S4311 = S4322 =(CI3e33-C33e31)/(C33K33+e~3). (27)

By substituting eqns (24)-(27) into eqns (18a), (18b) and (19) respectively, and adopt
ing the generalized Voight two-index notation in eqn (20), the coefficients hij and T Ji can be
obtained analytically and are listed in Appendix B. Hence, eqn (18b) is written out in detail
as follows:

where

HI = B(T11 + T I2 -2T13 )/2+L I3 (J°,

H 2 = B(T2I + T22 -2T23 )!2+L23 (J°,

H 3 = B(T31 + T32 - 2T33 )/2 +L 33 (Jo,

H 9 = B(T91 +T92-2T93)!2+L93(J°, (28)

L I3 = {2Cl3efle31-2Cf3dl-(CII +CI2)(efle33+Cf3K33)

+ (Cfl + Cf2)(e3Ie33 +CI3 K33)}/L,

L 23 = {2CI3efle31-2Cf3e~I-(C\I +C I2 )(efle33+ C f3 K33)

+(Cfl +Cf2)(e3I e33+ C I3 K33)}/L,

L 33 = 1-{[-2CI3ef3e31 +2Cf3e~1+(CII +CI2)(ef3e33+Cf3Kd

-2Cf3(e3Ie33 + C 13 KJj))jL},

(29)

Finally, the internal stresses (Jij in eqn (12) are evaluated by substituting eqn (22) into
eqn (14) as
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(30)

where Qi and Ri (i = 1, 2, 3, 9) are listed in Appendix A, and the constants Yand Y i are
given below.

For an elliptical inhomogeneity oriented with its generatrix parallel to the X3 axis,

Y= {CL - Ciz +4(Cl2 C 13 - CII C I3 -ci3 + CII C33 )}/(4CII ),

Y1 = a(Cl2-CII)(2CI3-CII-CIZ)/{2(l+a)Cll},

Yz = (Cl2 -CId(2C13 -CII -C,z )/{2(l +a)CId,

Y3 = (CII C l3 -Cl2 C I3 +2ci3 -2CII C33 )/(2CI1 ),

Y9 = (Clle31-CIZe31 +2C13e31-2Clle33)/(2CII)'

For a ribbon-like inhomogeneity,

Y= {cil - ciz +4(CIZ C I3 - Cll C l3 - Ci3 + CII C33 )}/(4CI1 ),

Y, = a(CI2-CII)(2C13-CII-CIZ)/(2CII),

Yz = (l-a)(Clz -C11 )(2CI3 -CII -Clz )/(2CII ),

Y 3 = (CII C I3 -CIZ C I3 +2cL -2CII C33 )/(2CII ),

Y9 = (Clle31 -CIZe31 +2C13e31 -2Clle33)/(2CII)'

For a rod-shaped inhomogeneity with its axes parallel to the tensile direction,

Y= {CL - ciz +4(C12 C I3 - C II C I3 - Ci3 + CII C33 )}/(4CII ),

Y I = Y z =(CIZ-CII)(2CI3-CII-CI2)/(4CII),

Y 3 = {(CII-CIZ+2CI3)C13-2CIIC33}/(2Cld,

Y9 = {(CII -CIZ +2CI3 )e31 -2Clle33}/(2CII)'

(31)

(32)

(33)

For a penny-shaped inhomogeneity with flat faces perpendicular to the tensile direc
tion,

Y = Y I = Yz = {2C33e~1 -4C13e31e33 + (CII + C,z )d3

+ (CII C33 -2Ci3 +CIZ C33 )K33}/{2(eL +C33 K33)},

Y 3 = Y9 = O. (34)

The equations above show that Yand Y i are independent on the size of the inhomogeneities
but are dependent on the shape.

The yielding stress of this piezoelectric composite material is

(35)

and the linear work-hardening rate is
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!(Y+RIYI+R2Y2+R3Y3+R4Y4)

1-!(QIYI+Q2Y2+Q3Y3+Q4Y4)

Tensile strain, S

Fig. I. A schematic representation of the macroscopic stress strain relation predicted by eqn (36)
for a piezoelectric composite material.

duO f(Y+RIYI+R2Y2+R3Y3+R9Y9)
de - I-f(Q, Y, +Q2 Y2+Q3 Y3+ Q9 Y9)"

(36)

By inspection of eqns (35) and (36) it is concluded that the yielding stress and linear work
hardening rate of piezoelectric composite materials are also independent on the size of the
inhomogeneities but are dependent on the shape.

A schematic representation of the macroscopic stress strain relation of eqn (36) is
depicted in Fig. 1. As an example of PZT-5 matrix with PZT-4 penny-shaped and rod
shaped inhomogeneities, respectively, the work-hardening rate of the piezoelectric com
posite material for different values of volume fraction is plotted in Fig. 2. The elastic,
dielectric, and piezoelectric properties of the constituents used in the numerical com
putations are given in the following:

o penny shape

o rod shape
5

1

GPa
6

O'---_--'-__-'--_--l__-i-__L-_-'

0.00 0.02 0.04 0.06 0.08 0.10 0.12

f
Fig. 2. The work-hardening rates of the piezoelectric composite material for different values of
volume fraction (solid lines for piezoelectric inhomogeneities, dashed lines for the inhomogeneities

without a piezoelectric coupling effect).
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PZT-4 inhomogeneities

Jin H. Huang

Cfl = 139 GPa, Cf2 = 77.8 GPa, Cf3 = 74.3 GPa, Cr3 = 115GPa,

PZT-5 matrix

CII = 121 GPa, C I2 = 75.4 GPa, C I3 = 75.2GPa, C33 = 111 GPa,

C44 = 21.1 GPa, e31 = -5.4c/m2
, e33 = 15.8c/m2

, e ls = 12.3c/m2
,

KII = 8.1066 X 10- 9 c2IN m2
, K33 = 7.3455 X 10- 9 c2IN m2

.

As indicated in Fig. 2, the piezoelectric composite material shows linear work-hard
ening although the matrix is perfectly plastic. The linear work-hardening rate is proportional
to the volume fraction of the inhomogeneities and are dependent on the shape. It is also
shown in Fig. 2 that when piezoelectric coupling is absent (i.e. eimn = 0), the material also
behaves as a linearly hardening material. As is clear from the figure, the linear work
hardening rate of the piezoelectric composite with penny-shaped inhomogeneities is higher
than that of the material without a piezoelectric coupling effect. However, in the case of
rod-shaped inhomogeneities, the linear work-hardening rates for the material with and
without an electromechanical coupling effect are nearly equal over the range of volume
fraction.

5. CONCLUSIONS

This work has been concerned with the development of an analytical approach to
predict the work-hardening behavior of composite material subjected to a uniaxial tension.
The analytical approach that has been forwarded is based on the variational principle and
th~ equivalent inclusion method. It is concluded that the mechanical behavior of the
piezoelectric composite materials is controlled by the nature of the inhomogeneities and
the matrix. When both the matrix and the inhomogeneities of piezoelectric materials are
transversely isotropic with different electroelastic moduli, the linear work-hardening rate is
predicted and it is obtained in closed form when shapes of the inhomogeneities are elliptical,
ribbon-like, rod-shaped, and penny-shaped. The work-hardening rate is proportional to
the volume fraction of the inhomogeneities. Moreover, the results show that the yielding
stress and the work-hardening rate are independent on the size of the inhomogeneities but
are dependent on the shape of the inhomogeneities.

Acknowledgement-This paper was supported by the National Science Council of Taiwan through grant no. NSC
84-2122-E-035-004.
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APPENDIX A

Q, = {[(P!J, -C(!J,)L" + (7-L" - pL J3 )!J,]h" + [C(!J,h2\ - !J,h,d + p(!J, hJl - !J3h2\)]L13) /(7-W-Ap),

Q, = {!J,hIlL,,+(fJ3h2\-fJ,h,dLI3-fJ,hIlL23-AQ,}/C(,

Q, = {hi' L" -h2\ L 13 - (h"h'3 -h 13 h2\ )Q3 - (h" h'9 -h 19 h21 )Q,}/!J"

Q, = (L ,1 -h 12 Q, -h 13 Q, -h"Q,)/h",

R, = {(pfJ3 - 7-fJ,) (T2\ + T22 -2T")h,, + [C(T9, + T9 , -2T93 ) - p(TJI + T30 -2T3])]

'fJ,h ll + [C(fJ,h 21 -fJ,h9,)+p(fJ,hJl-fJ3h2\)](T" +T12 -2T13 )}/2(C(w-),p),

R] = {[fJ, (T31 + T32 -2TJ3 ) - fJ,(T2\ + T22 -2T,])]h l1 + (fJ3h2\ - fJ,h 3,)' (T" + T" - 2T13 ) - 2AR,} /2C(,

where

(J. = fJ, (h" h], -h 13 h3d - (h" h,] - hlJh 21 )fJ],

P = fJ, (h" h" -hl]h9l ) - (h l1 h" - hlJh21 )fJ"

), = fJ,(h"h 3,-h'9h3d-(h"h,,-h19 h2,)fJJ'

W = fJ,(h"h99-h'9h,d-(h"h'9-hl9h2l)fJ"

fJ, = h"h 22 -h 12 h2\,

fJ, = h"h92 -h 12 h9l ,

fJ, = hl1 h32 -h 12 hJl.

APPENDIX B

Elliptical inclusion (ai/a, = a, a, ---> ex;)

(AI)

(A2)

(BI)

h" = {(2Cf, + 3aCf, -aCf, +aC" +2a'C" )C" +a(Cf, + Cf, +2aCf,)C12 -a(l +2a)Cf,}/{2(1 +a)'C,,),

h 12 = C, + {(Cf, - CI1 )[(2+a)C12 -aCI1 ] + (Cf, - C 12 )[(2a' +3a)C" +aC12 ]) /2(1 +a)'C",

h 13 = C, + {(Cf, -C, ,)+a(Cf,-C12 )}CI]/(I +a)C I1 ,

h19 = e31 +{(Cf, -C,,)+a(Cf,-C 12 )}eJl /(l +a)C",

h21 = {(2Cf, -aCf, + 3aCf2 +aC I1 )C I1 +a(Cf, + 2aCf, + Cf,)C 12 -aCf,) /{2(1 +a)'CI1 },

h2, = C" + {(n, - c" )[(2a' +3a)C I1 +aCI,] + (Cf, - C 12 )[(2+a)C12 -aCI1 ]) /2(1 +a)'C",

h21 = C3 + {a(Cf, -C,,)+(Cf, -Cd}C,/(I +a)C I1 ,

h" = C 31 +{a(Cf,-C,,)+(Cf,-C12 )}c,,/(l+a)CI1 ,

h" = {(c" +aCdCf, +a(C" -C,)C,,}/{(l +a)C,,),

h32 = C 13 +(Cf,-C,)(aCI1 +C12 )/(I+a)Cl1,

h" = C,,+(Cf,-CI])CI]/CI1 ,

h19 = C33 + (C f3 - C")e,, !C I I ,

h91 = {(C" +aCI,)e!, +a(C" -C,)c,t!/{(l +a)C I1 ),

h92 = e" +(e!l-c3l )(aC I1 +C,,)/(l+a)CII ,

h'3 =e"+(c!,-e,dC,,/C, ,,

h99 = -k" + (e!, -e31 )e31/CI',

and
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TI2 = {(aCll -aCtl -2Ct, -aCf,)CII + (2Ctl +aCfl +aCf, -aCI,)Cd / {2(l +a)'CII },

TI3 = {(Cfl +aC II +aCf, -aCl2)C I3 - (I +a)Cf3CII} /{(l +a)CII ),

T'I = a{ (CII - Ctl - Cf2 -2aCf,)CII + (Cfl + 2aCfl + Cf, - Cl2 )C12} / {2(l +a)'CII },

T22 = {[(a+2)(CII -Cfd -aCf,]CII + [(a+2)(Cf, - C I,)+aCfl]C12 }/{2(l +a)'C I d,

T23 = {(aCfl + CII + Cf, - Cl2)C13 - (l +a)Cf3 c id/{(l +a)CII ),

T31 = a(Cl2 -CII )(Cf3 -CI3 )/{(l +a)CII },

T" = (Cl2-CII)(Cf3-CI3)/{(l+a)Cld,

T33 = {(Cf3-CIJ)CI3-(Cj'J-C3J)CldICII,

T91 = a(C I , - CII )(ej'1 -e31)/{(l +a)C I d,

Tn = (CI, - CII)(ej'1 -e31 )/{(l +a)CII },

T93 = {(ej'l-e31)CI3 -(ej'3-e33)CII}/CII.

Ribbon (al « a" a3 ---+ r:I))

hi I = {(2Cfl -aCfl -act, +aCII)CII +a(Cfl + Cf,)Cl2 -aC;,}/(2C I d,

h12 = Cl2 + {(Cfl - CII )[(2- 3a)(C12 -aCII )) +a(Cf, - C I,)(3CII + C I,)}/(2CII ),

h l3 = C3+{(I-a)(Cfl-CII)+a(Cf,-CI,)}CIJlCII'

h l9 = e31 + {(l-a)(Cfl - C Id +a(Cf2 - C I2 )}e31/C II'

h'l = {(2Cf, -aCfl -aCf, +aC I dCII +a(Cfl + Cf,)C12 -aC;2}/(2C d,

h22 = CII + (a(Cfl -CII )(3CII +CI,) +(Cf, -CI2)[(2- 3a)C 12 -aCII ]}/(2CId,

h'3 = CIJ+{a(Cfl-CII)+(l-a)(Cf,-Cd}CI3ICII,

h29 = e3l +{a(Cfl-Cld+(l-a)(Cf,-C I2 )}e31/CII'

h31 = {(Cll-aCII +aCI,)Cf3+a(CII-CI,)CI3}/CII,

h" = CIJ+(Cf3-C13){2aCII +2(l-a)CI2 }/(2CII ),

h 33 = C33+(Cf3-CI3)CIJ/Clb

hJ9 = e33+(CfJ-CI3)e3l/Clb

h91 = {(Cll-aCII +aC l2 )ej'1 +a(CII-CI,)eJd/CII,

h92 = e31 + (ej'1 -eJ I)(2aCII +2(l-a)C l2 }/(2CII ),

and

Til = a(Cfl +Cf2-CII-Cd(CI,-CI)/(2CII),

T l2 = {(Cfl -CII )(2CI, -3aC12 -aCII ) + (Cf, - C I2 )(3aCII -2CII +aC I2 )}/(2C Id,

TIJ = {(Cfl -aCfl +aCf, +aC II -aCI2)CI3 - CII cfdiCII,

T2l = a(ctl +ct, -CII - CI2 )(CI' -CII )/(2CId,

T22 = {(Ct2 -CI2)(2CI2 -3aC l2 -aCII )+ (Cfl -CII )(3aC II -2CII +aCd}/(2C d,

T23 = {[a(Cfl - CII) + (l-a)(Cf2 - C l2)]CI3 - (Cf3 - C I3 )CId /CII ,

T31 = a(C I2 -CII )(Cf3 -CI3 )/CII ,

T" = (l-a)(CII-Cd(CI3-Cf3)/Clb

TJ3 = {(Cf3-CIJ)CI3-(Cj'3-C33)CII}/CII,

T91 = a(C 12 - CII)(ej'1 -e31)/CII ,

T9, = (l-a)(CII - C 12 )(e3l -ej'I)/CII ,

T93 = {(ej'1 -e31)CIJ -(ej'3-e33)Cld/CII.

(B2)
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(B4)



Work-hardening behavior of piezoelectric composites

Rod shape (a l = a2, a3-+ CIJ)

h
"

= h" = CII + {(Cf, - C
"

)(5C,, + C12 ) + (Cf2 - C12)(3CI2 - CId}/(8C, d,

h12 = h21 = C12+{(Cf,-C")(3CI2-C,,)+(Cf2-CJ(5C,, +CI2 )}/(8CII ),

hl3 = h2] = Cll+{(Cfl-Cld+(Cf2-CI2)}Cn/(2Cld,

hl9 = h29 = e31 +{(Cf, -C,d+(Cf2- C,,)}e,,/(2C,, ),

h'l = h" = CI, + (Cf, - ClJ)(C 1+ C12)/(2C ll ),

hJ3 = CJ3 +(Cf,-CI,)Cn/Clh

h 39 = eJ3 + (Cf3 - CI,)e31/(2CII ),

h91 = h92 = e31 +(e!l-eJl)(CII +C,,)/(2C,, ),

h9 , =e33 +(e!I-e'I)CI,/Clh

h99 = -K" + (e!1 -e3deJi/CIh

and

Til = T" = {(Cf,-C,,)(C,,-3C,,)+(Cf,-C,,)(3C,-C,,)}/(8C,d,

T 12 = T" = {(CII -Cf, -3Cf,)C
"

+(3Cf, +Cf2 -C,,)Cn}/(8C, d,

T'3 = T23 = {(Cf, +CII +Cf2-C,2)CI3-2Cf,C,d/(2C,,),

TJI = T" =(Cf,-CI3)(C,,-C,d/(2C,,),

T33 = {(Cf3-CI3)CI,-(Cf3-C,,)CII}/C'"

T91 = T9, = (ef, -e31)(C12 - CId/(2C,, ),

T93 = {(efl-e31)CI,-(ef3-e33)Cld/CII'

Penny shape (a l = a, » a3' a3 -+ 0) :

h l, = h" = CII +{(efl-e,d(CI3e"-C"e3d+(Cf3-CI,)(C"KJ3+e3Ie,,)}/P,,

h 12 = h21 = CI2+{(efl-e3d(ClJeJ3-C33eJl)+(Cf3-C3)(ClJK13+eJle,,)}/PI'

h l3 = h2] = Cf3'

h l9 = h'9 =efh

h31 = h" = C I3 + {(ef3 -e33 )(ClJe" - C3,e, tl + (Cf, - C13 )(ClJK" + eJi e,,)} /PI'

h33 = C!3,

h'9 = h9, = e!"

h91 = h92 = e31 +{(K,,-Kf,)(CI3e,,-C33e3l1)+(ef,-e,,)(ClJK33+e31e33)}/PI,

h99 = - K",

PI = C"K33 +e~3'

and
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Til = T" = {[(Cf3-CI3)(eJle33+ClJK33)-(e!l-eJl)(C33e31-ClJe")]/(e~3+C,,KJ3)}- (Cf,-C,tl,

T12 = T21 = {[(Cf3 - ClJ)(eJi eJ3 + ClJK13) - (ef, -e31)(C"e31 - C ,e,,)]/(ej, + C"K,,)} - (Cf, - CI,),

TI, = T2] = T33 = T9, =0,

T31 = T" = {(ClJe" - C"eJl )ef3 + (C!3e'l - Cf,e,,)e33 + (Cf, ClJ - CfJ C13 )K,,} l(e~3 + C3J K,,),

T91 = T9, = {(CJ ,e31 - ClJe,,)Kf, + (ef3 e31 -efleJ3)eJ3 + (ClJef, - C"eftlK33 }I(e~, + CJ3 K'3)' (B8)


